V57/S24011/EE/20160708

Time: 3 Hours Marks: 80

Instructions:

- 1. All Questions are Compulsory.
- 2. Each Sub-question carry 5 marks.
- 3. Each Sub-question should be answered between 75 to 100 words. Write every questions answer on separate page.
- 4. Question paper of 80 Marks, it will be converted in to your programme structure marks.
- 1. Solve any **four** sub-questions.
 - a) H is a subgroup of group G and N is a normal subgroup of G Then prove that

$$\frac{HN}{N} \cong \frac{H}{H \cap N}$$

b) Show that if $\{e\} = H_0 < H_1 < H_2 < \dots < H_n = G$ is a subnormal series of a group G

and
$$o\left(\frac{H_{i+1}}{H_i}\right) = S_{i+1}$$
 then G is of finite order $S_1 * S_2 * S_3 * \dots * S_n$.

5

5

5

5

- c) Find the ascending central series for :
 - ind the ascending central series for
 - i) S_3
 - ii) D₄
- d) Prove that : Any group of order pⁿ is nilpotent.
- e) Let G be a group and let G' be the derived subgroup of G. Then prove the following 5
 - i) $G' \triangleleft G$ i.e. G' is normal subgroup of G.
 - ii) $\frac{G}{G'}$ is abelian.
- 2. Solve any **four** sub-questions.
 - a) State and prove Second Sylow theorem.

b) Let G be a finite group with |G| = p * q where p and q are distinct primes and p < q, then prove the following

- i) G contains a normal subgroup of order q.
 - ii) G is not simple
- c) Show that a group of order 108 can not simple.

d) If $o(G) = p^2$ (p is prime), then prove that G is an abelian group.

e) Find class equation of S_4 . 5

KA16-820 V57/S24011/EE/20160708:1 (P.T.O.)

- 3. Solve any **four** sub-questions.
 - Prove that R is an integral domain iff R[x] is an integral domain. a)

5

- Let D be a UFD. $f(x), g(x) \in D[x]$ be primitive polynomials. Then f(x) * g(x) is b) 5 also primitive in D[x].
- Let F be a field then prove that $\langle p(x) \rangle \neq \{0\}$ of F(x) is maximal iff p(x) is irreducible c) 5 over F.
- Show that $f(x) = 8x^3 6x 1 \in \mathbb{Z}[x]$ is irreducible over Q. d) 5
- Show that the polynomial $(x^4 + 4)$ can be factored into linear factors in $Z_5[x]$. 5 e)
- Solve any **four** sub-questions. 4.
 - Prove: For any module homomorphism $f: M \to N$, ker f is a submodule of the a) module *M* and im *f* is a submodule of the module *N*.
 - Let *A* and *B* be *R*-submodules of an *R*-module *M*. Then prove that: $\frac{A+B}{A} \cong \frac{B}{A \cap B}$ b)
 - Let M be R-module and N be R-submodule of M. Then prove that M is Noetherian iff c) N and M/N are Noetherian. 5
 - Let $V=R^3$ be a vector space over the field R. Let $x_1 = (1,0,0)$, $x_2 = (1,1,0)$, $x_3 = (1,1,1)$ d) show that $V = Rx_1 + Rx_2 + Rx_3$. 5
 - Show that: Let M be a R-module. let $K \subset N \subset M$ are submodules of M. If K is a e) direct summand of M and if N/K is a direct summand of M/K then prove that N is a direct summand of M. 5

KA16-820

V57/S24011/EE/20160708:2