T03/T05/T06/T07/T24/T34/T35/T50/T51/T52/TES012/TML012/EE/2016

Time: 3 Hours Marks: 80

Instructions:

- 1. All Questions are Compulsory.
- 2. Each Sub-question carry 5 marks.
- 3. Each Sub-question should be answered between 75 to 100 words. Write every questions answer on separate page.
- 4. Question paper of 80 Marks, it will be converted in to your programme structure marks.
- 1. Solve any **four** sub-questions.
 - a) A circular water fountain 6.6m in diameter is surrounded by a path of width 1.5m. Find the area of this path.
 - b) Solve, by Cramer's rule, 5 2x-3y-10 = 0 and 5x+3y-11 = 0.

c) Simplify
$$\sqrt{3} + \sqrt[3]{81} - \sqrt{27} + 5^3 \cdot \sqrt{3}$$

d) Simplify
$$\log_5 27 - \log_5 81 + \log_5 243 - \log_5 6 + \log_5 18$$
.

- e) Find the quadratic equation whose roots a are $2 \pm i\sqrt{3}$.
- 2. Solve any **four** sub-questions.

a) If
$$\sin \theta = \frac{3}{5}$$
, find the value of $\cos \theta$, $\tan \theta$, $\sec \theta$ and $\csc \theta$.

b) Show that
$$\frac{\sin 2\theta}{11 - \cos 2\theta} = \cot \theta$$
.

- c) In a triangle ABC, where sides are 13cm, 14cm, and 15cm. Find the area of a triangle ABC.
- d) Write the complex number $\frac{3+i}{5+2i}$ in the form of a+bi.
- e) The angles of a triangle are in the ratio 1:2:3. Find their measures.

KA16-1232 T03/T05/T06/T07/T24/T34/T35/T50/T51/T52/TES012/TML012/EE/2016:1 (P.T.O.)

- 3. Solve any **four** sub-questions.
 - a) Show that the points A (7,5), B (2, 3) and C (6, -7) are the vertices of a right angled triangle and find it's area.
 - b) Find the equation of a line passing through (-4, 6) and (8, -3).
 - c) Find the equation of the circle having the segment joining (3, 4) and (5, 2) as diameter. 5
 - d) Find the equation of the tangent and the normal to the circle $x^2 + y^2 = 61$ at (5, 6). 5
 - e) Draw the graph for y = 3x + 4.
- 4. Solve any **four** sub-questions.
 - a) Find a unit vector perpendicular to each of the vector a = i j + k and b = 2i + j 3k.
 - b) Find x if the vectors 2i j + 3k, i + j 3k and 3i xj + 9k are coplanar.
 - c) Find the combinational circuit corresponding to the Boolean expression $(x_1 \cdot x_2) + \overline{x_3}$.
 - d) Verify Demorgan's Law, $\overline{x+y} = \overline{x} \cdot \overline{y}$ using truth table.
 - e) A fair die is thrown. Find the probability of score being divisible by 3.

