P131/CMP501/EE/20170115

Time: 3 Hours Marks: 80

Instructions:

- 1. All Questions are Compulsory.
- 2. Each Sub-question carry 5 marks.
- 3. Each Sub-question should be answered between 75 to 100 words. Write every questions answer on separate page.
- 4. Question paper of 80 Marks, it will be converted in to your programme structure marks.
- 1. Solve any **four** sub-questions
 - a) i) Draw example of each of the following (give justification):
 - 1) regular graph
 - 2) simple graph
 - 3) tree
 - ii) Let $A = \{1, 2, 3, 4\}$ and Z be the set of integers. Define $f: A \rightarrow Z$ by f(x) = 3x + 7. Show that f is a function from A to Z. Also find the range of f.

b) Solve the following: 5

- i) Convert (11001)₂ to decimal equivalent number.
 - ii) Write the converse, inverse and contrapositive of the following conditional statement:

"If Sachin receives a scholarship then he will study further".

c) i) Simplify:

$$17\sqrt{3} - 2\sqrt{32} + 3\sqrt{18} - 4\sqrt{48}$$

- ii) What is the logarithmic form of the following exponential equation:
 - 1) $7^3 = 343$
 - 2) $\sqrt{16} = 4$

5

5

KA17-1051 P131/CMP501/EE/20170115:1

(P.T.O.)

d) i) The universal set and A its subset where

 $U=\{x:x\in N \text{ and } x\leq 10\},\ A=\{y:y \text{ is a prime number less than } 10\}.$ Find:

- 1) A^c
- 2) Represent A^c in Venn diagram.
- ii) A debating team consists of 4 boys and 3 girls. Find the number of ways they can sit in a?
- e) In a school there are 20 teachers who teach Mathematics or Physics. Of these, 12 teach Mathematics and 4 teach both Physics and Mathematics. How many teachers teach Physics?
- 2. Solve any **four** sub-questions

a) Compute:
$$(11010)_2 + ((11100)_2 - (10011)_2)$$
 5

- b) Let $f: R \to R$ be a function defined by $f(x) = 5x^3 8$ for all $x \in R$, show that this function is a objective function. Hence find f^{-1} .
- c) Find the area of the parallelogram whose adjacent sides are represented by the vectors i + j + k and i j + k.

d) If
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} B = \begin{bmatrix} 1 & 2 \\ 3 & -2 \end{bmatrix}$$
 show that $|AB| = |B||A|$.

- e) $p(x)=6x^3+9x^2+\frac{1}{2}$ and $q(x)=4x^3+\frac{1}{4}x-4$, are two polynomials, then Find their addition?
- 3. Solve any **four** sub-questions
 - a) What is the simplest form of the surd:

i)
$$\sqrt{\frac{343}{45}}$$

ii)
$$3\sqrt{8} + \sqrt{32} - 5\sqrt{2}$$

b) Find the roots of the quadratic equation : $3x^2-x-10=0$.

KA17-1051

P131/CMP501/EE/20170115:2

- c) i) Subtract the following binary numbers:
 - 1) $(11001)_2 (10101)_2$
 - $2) \quad (10100)_2 (1111)_2$

ii)
$$\log_5(25 \times 125) = ?$$

- d) Find the area A of a triangle with sides 5 cm, 12 cm and 13 cm? 5
- e) How many seven-person committees can be formed each containing three female members from an available set of 20 female and four male members from an available set of 30 males?
- 4. Solve any **four** sub-questions
 - a) Find all roots of $x^3-6x^2+9x-4=0$.
 - b) If the cost of 2 pens and 3 pencils is 26 Rs. and the cost of 3 pens and 2 pencils is 34 Rs., then what is the cost of one pen and one pencil respectively?
 - c) Find gof and fog, where
 - i) $f(x) = x-2, g(x) = x^2+3x+1$

ii)
$$f(x) = \frac{1}{x}, g(x) = \frac{x-2}{x+2}$$

d) The relation R on $A = \{1, 2, 3, 4\}$ is defined by : $(x, y) \in R$ if $x^2 \ge y$. This relation R can be written as a set of ordered pairs as :

$$R = \{(1, 1), (2, 1), (3, 1), (4, 1), (2, 2), (3, 2), (4, 2), (3, 3), (3, 4), (4, 4)\}$$
. Find the matrix of relation R .

e) Find the cross product of the vectors j - 3k and i - j + 2k.

KA17-1051